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Abstract

Comparing successive datasets of GIS polygons derived from remote sensing data is a common approach to quantify

morphological change. GIS-derived datasets capture instantaneous observations or “snapshots” of the state of a

system at a given time but do not explicitly capture the temporal sequences needed to characterize system processes.

Comparisons between these “temporally-naive” datasets can be used to infer properties and trends of the landscape

as a whole, but tracking changes in the characteristics of individual landforms (e.g., sandbars, dunes, or other surface

features of interest) across snapshots is labor-intensive and infeasible for large or irregular datasets. Using traditional

computer-based procedural methods to compare sequences of datasets without knowledge of temporal trajectories

introduces several challenges and data artifacts that complicate analysis. We propose a graph-theory approach for

processing sequential spatial data to automatically identify and track distinct groups of related landforms or “geomorphic

units” across fully- or partially-overlapping snapshots. This approach allows tracking even in cases where landforms

fragment, merge, migrate, or become temporarily obstructed from view. The method promotes new panel data analysis

opportunities and overcomes three critical limitations of traditional procedural methods of assessing landscape change

from spatial data: (1) it can generate landscape metrics based on geomorphic units, rather than the arbitrary geographic

units of the underlying spatial datasets, (2) it distinguishes missing or obstructed observations from changes in the

characterization of landforms due to environmental conditions, and (3) it automatically generates panel datasets and

discriminates between within-landform change and across-landform variation. The panel datasets can be used to

upscale feature-level information to system-level metrics and analysis. Furthermore, a graph-theory approach can

yield insight on geomorphic change through analysis of the graph structure, and offers a promising approach for

geomorphological analyses which retain information on the spatial configuration of geomorphic units. We demonstrate

the method with examples from emergent sandbars on the Missouri River.
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Introduction

Geomorphologists commonly draw polygons to map land-
forms from remote-sensing imagery. Comparing repeated
surveys or collections of “snapshots” of a landscape creates
opportunities for quantitative temporal analysis of morpho-
logical change. However, independent snapshots represent
the state of the system at a single time without any informa-
tion about the temporal continuity or discontinuity between
individual landforms at different times. A collection of snap-
shots is a repeated cross-sectional study of a landscape, in
that it captures the characteristics of individual landforms
at different points in time but does not provide on its own

any information on how characteristics of a given landform
differ between snapshots, or even if the same landforms
are captured in any given pair of images. Repeated cross-
sectional studies can generate landscape-scale metrics (e.g.,
total number of landforms of each type, total area and spatial
density of each type, etc.) and the temporal evolution of these
metrics, but cannot identify how this evolution emerges from
the trajectories of individual landforms because they do not
explicitly track these trajectories. Cross-sectional analyses
almost always lack the statistical power to differentiate
causal relationships from simple associations (Hilton and

Prepared using sagej.cls [Version: 2016/06/24 v1.10]

Page 4 of 17

http://mc.manuscriptcentral.com/PiPG

Progress in Physical Geography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

2 Journal Title XX(X)

Patrick 1969; Hsiao 1985; Duncan and Kalton 1987; Triv-
ellato 1999). Furthermore, inferences about a population are
rarely applicable to individuals or groups within a population
(Robinson 1950; Simpson 1951; Selvin 1958; Pearl 2009).

In spatial studies, direct comparison of snapshots is
meaningful only when all snapshots have the same
spatial extent. Generating landscape metrics from snapshots
that inconsistently represent system state (such as when
successive snapshots only partially overlap) or contain
missing or obstructed observations (due to environmental
conditions such as cloud cover) risks confusing actual
change in landscape structure with statistical artifacts
(Heckman 1977; Reddy and Dvalos 2003; Gelfand et al.
2010). Maintaining consistency in landscape metrics across
snapshots may therefore exclude large regions from
the entire collection. Furthermore, metrics derived from
direct comparisons of snapshots can be misleading when
they are derived from landform delineations made under
the specific conditions of each snapshot, and do not
incorporate information on landform history. These metrics
may misrepresent landscape characteristics when prevailing
conditions such as season (e.g., presence or absence
of vegetation) or hydrology (e.g., temporary inundation)
strongly influence the identification and characterization of
landforms, or when landscapes are highly dynamic—places
where landforms fragment, merge, or migrate within the
system (Figure 1).

Figure 1. Satellite imagery of sandbars in the Missouri River.
Sandbars fragment, merge and migrate in response to
geomorphic processes, but also become partially- or
fully-inundated as river flow rises. Drawn polygons may not
adequately represent the true boundaries of the landforms, and
directly comparing metrics derived from these polygons may not
capture the nature of geomorphic processes and interactions
between individual landforms. Image source: Google Earth.
42◦47′N and 97◦08′W. Accessed January 22, 2018.

Many geomorphic studies rely on expert analysis to
identify landforms and track characteristics of individual

geomorphic units over time. The competent geomorphol-
ogist can intuitively recognize and distinguish between
geomorphically-relevant features across snapshots. Explic-
itly establishing temporal linkages between individual land-
forms across snapshots transforms repeated cross-sectional
data into a panel dataset. Panel studies are more powerful
than repeated cross-sectional studies because they track
changes in characteristics of individuals as well as the overall
population over time. They provide stronger statistical power
for inferring causal relationships by understanding how pop-
ulation trends emerge from the trajectories of these individ-
uals (Shadish et al. 2001; Frees 2004). However, visually
evaluating each landform and manually identifying trajecto-
ries is not feasible for large datasets containing hundreds of
features. Computer algorithms that use objective criteria to
connect geomorphically-relevant features across snapshots
are needed to analyze geomorphic change at these larger
scales. However, to our knowledge no objective methods for
programmatically establishing individual trajectories across
large datasets have been described in the geomorphological
literature.

We present a robust, automated method for processing
extensive geomorphic datasets using graph theory which
operates on top of an existing object classification
scheme to identify and track geomorphic units—defined
as distinct groups of related landforms—across fully- or
partially-overlapping snapshots. This method automatically
links observations of individual landforms across multiple
snapshots, even in cases where landforms fragment, merge,
migrate, or become temporarily obstructed from view. The
method is applicable to a wide variety of spatial datasets
and can distinguish actual landform change from apparent
change, where landform size and shape are confounded by
variability in observation conditions. The method addresses
challenges encountered when managing disparate spatial
datasets for landform evolution studies.

This paper provides three incremental contributions to
geomorphology and understanding of landform evolution:
(1) it establishes a robust, objective and repeatable
framework for identifying and linking geographic units
across a series of snapshots into geomorphic units in order
to generate landscape metrics; (2) it supports distinguishes
missing or obstructed observations from changes in
the characterization of landforms due to environmental
conditions; and (3) it automatically generates panel
datasets that capture trajectories of individual landforms
and discriminates between within-landform change and
across-landform variation. Using this method to generate
temporally-explicit data structures also creates opportunities
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to leverage graph theory for additional morphological
analyses. We demonstrate the method with examples from
emergent sandbars in the Missouri River.

Background

As spatial landform data have become more abundant,
change-detection methods have grown more common in
geomorphological research (James et al. 2012; Napieralski
et al. 2013). While many studies have focused on gridded
models (e.g., Brasington et al. 2003; Martınez-Casasnovas
et al. 2004; White 2006; Wheaton et al. 2010), Geographic
Object-Based Image Analysis (GEOBIA) (Lang 2008;
Blaschke 2010) also emerged as a powerful tool for
landform evolution studies (Drăguţ and Blaschke 2006;
Shruthi et al. 2011; Phinn et al. 2012). Despite increasing
data availability and maturation of analytical methods, most
studies of landscape change are scale-limited, typically
falling into two categories: detailed investigation of small
study areas generated from fine-scale data such as Lidar,
aerial photographs or sub-meter resolution satellite imagery
(e.g., Woolard and Colby 2002; Feurer et al. 2008; Heritage
et al. 2009; Mandlburger et al. 2015) or studies of
landscape trends generated from coarse-scale data such as
RADAR or meter/decameter resolution satellite imagery
(e.g., Farr and Chadwick 1996; Bishop et al. 2002, 2003).
Few geomorphological studies connect fine-scale landform
evolution to large-scale landscape change. The landform-
landscape scale analyses are usually data-limited, since
coverage, completeness and resolution of spatial data are
inversely related to the size of a system. For the most part,
researchers relying on remotely-sensed data are often forced
to choose between fine-resolution satellite imagery with
reduced spatial and temporal coverage and coarser-resolution
imagery collected at a higher frequency and greater extent.

Studies of dynamic landscape evolution from landform-
scale data are particularly constrained by these issues, as
they require data with both fine spatial resolution (in order to
effectively delineate individual landforms and detect change)
and high temporal frequency (in order to adequately capture
landform evolution trajectories). Furthermore, managing and
analyzing large spatial datasets pose intrinsic challenges
in terms of data storage requirements, image processing
and normalization to account for atmospheric conditions,
and quality assurance of object classification algorithms or
manually-digitized landforms (Goodchild and Haining 2004;
Renschler et al. 2007; Bishop et al. 2012).

Mid-channel emergent sandbars, common features in
sandbed rivers, are an example of a dynamic landform with

important landscape-scale implications. On the Missouri
River, emergent sandbars provide critical nesting and
foraging habitat for the endangered interior population of
least tern (Sternula antillarum) and the threatened Northern
Great Plains population of piping plover (Charadrius

melodus) (Buenau et al. 2014). Hydrologic variability masks
sandbar building, erosion, and migration as river stage
variation inundates and, sometimes, divides sandbar features.
Superposition of repeated satellite imagery captures,
but does not distinguish between, the two types of
sandbar change: morphodynamic change (i.e., the erosion,
aggradation, migration and true fragmentation of sandbars)
and hydrodynamic change (e.g., temporary fragmentation
or complete inundation of sandbars during high flows)
(Jacobson 2013). Both morphodynamic and hydrodynamic
change are important to understanding emergent sandbar
habitat (ESH) dynamics, but analysis of long-term landscape
trends in ESH requires an approach that can parse these
two processes. Separating these effects is non-trivial and
requires fine-resolution spatial data with a high observation
frequency.

Graph theory is a branch of mathematics concerned
with relational data, i.e., groups of discrete concepts or
objects (people, communities, buildings, etc.) that interact.
Individual objects are represented as “nodes” in a graph, and
a relation or interaction between two objects as an “edge”
connecting the two objects (nodes). Graphs can model
physical connectivity, hierarchies and feedback loops in a
wide variety of processes and structures. The mathematics of
graph theory naturally support analyses that connect broader
system behavior to interactions and behaviors of individual
elements, i.e., analyses that aim to ‘keep the “whole” in
mind while studying the “parts” and vice versa’ (Jordán and
Scheuring 2004). Graph theory has been widely applied to
a variety of problems in computer science, transportation
engineering, geography, hydrology, landscape ecology, and
the biological and medical sciences. Applications of graph
theory in geomorphology are comparatively limited, but
a few researchers have applied graph-based approaches
to morphological change in natural systems (Perret et al.
1999; Valentini et al. 2007; Pardo-Iguzquiza et al. 2011),
landscape structure and connectivity (Rodrı́guez-Iturbe and
Rinaldo 2001; Werner 1993, 1994; Gascuel-Odoux et al.
2011; Aurousseau et al. 2009), and process linkages
or cascades (Phillips 2013; Heckmann and Schwanghart
2013; Heckmann et al. 2014). Heckmann et al. (2015)
compiled an excellent review of graph-theory approaches in
geomorphology, and Phillips et al. (2015) provide a more
general review of graph theory in the geosciences.

Prepared using sagej.cls

Page 6 of 17

http://mc.manuscriptcentral.com/PiPG

Progress in Physical Geography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4 Journal Title XX(X)

A39

B81

A41

A38

A40

B80

A33

A35

B66

B71

A34

B76

A37

B77

A41

B81
A38

A40

B80

B76

A37 B77
A39

A33

A35

B66

A34

B71

Layer A Layer B Edge Component

Spatial Representation Graph Representation

Figure 2. Left: A spatial union of two layers A and B
representing classified sandbars at two different times, with
individual features labeled. Right: Interpreting the union
attribute table AB as an edge list yields a graph representation
of feature intersections. The graph components are identified by
dashed lines enclosing groups of nodes.

Methodology

The method begins with a collection of N uniquely-
named data layers representing discrete features in some
spatial domain D, such as a collection of snapshots in a
single geodatabase derived from repeated remotely-sensed
images. Depending on the nature of the layers, features
may represent physical landforms (e.g., islands, lakes) or
contours of continuous data (e.g., zones of high chlorophyll
concentration in an aquatic system). A layer ` in the
collection spans a spatial domain D` that is equivalent
to or contained within the spatial domain of the entire
collection (D` ⊆ D). Each layer is linked to an attribute
table which includes a unique identifier (OBJECTID or FID
in GIS software) for each feature in the layer and its bulk
properties (e.g., feature area, perimeter, and classification).
The combination of the unique layer name and the unique
FID of each feature contained within the layer provides a
unique identifier for every feature in the entire collection.

Consider two layers in the collection (A,B ∈ N ), with
spatial domains DA and DB , which represent the state of the
system at time tA and a later time tB , respectively. Further
assume that the two layers partially-overlap (DA ∩DB 6=
∅). The spatial union of these two layers (AB = A ∪B),
shown on the left in Figure 2, generates a collection of
features a1, a2, . . . , an from A and b1, b2, . . . , bm from B

in the region DAB = DA ∪DB , where features from A may
or may not intersect with multiple features from B and vice
versa.

The attribute table of the union layer AB (see
supplemental materials) tracks the spatial overlap (or lack
thereof) between features in A and features in B. The union
table represents a one-to-one spatial relationship between

two features ai and bj with a single row in the table, and a
many-to-one relationship between features aj , ak and bi with
multiple rows. A missing value in either column represents
the case where a feature (or a portion of a feature) from one
layer did not overlap with a feature in the other layer.

The two-column union attribute table becomes the edge

list of a graph G(A,B). The unique identifiers in each
column (which identify individual features in layers A and
B) define nodes of the graph, and rows in the table (which
identify spatial overlaps between features in A and features
in B) are edges that connect nodes. A graph component is
a set of nodes that are connected to each other but not to
any other nodes in the graph. The membership of a node (a
numeric index) identifies which component it belongs to. By
definition, a node can only be a member of one component.
Two arbitrary features Ai ∈ A and Bj ∈ B are members of
the same component k if they spatially intersect. The graph
G(A,B) corresponding to the union layer AB is shown on
the right in Figure 2. Dashed lines enclosing connected nodes
indicate the graph components.

The components of G(A,B) embody links between
features captured by the spatial union. Because the two layers
represent the same system at two different times, the spatial
union also infers temporal links between features. Feature
ai in A and feature bj in B have the same membership
(ai, bj ∈ k) if they are spatially and temporally related (they
occupy a similar region of space over the period tA → tB).
The method populates the original attribute tables of layers
A and B with the memberships and combines the attribute
tables to produce time series of individual components.

Defining temporal links based on spatial unions requires
that two successive observations of a feature at least partially
overlap. Therefore, the frequency of observation must be
sufficiently high relative to the speed at which a feature
migrates. This limitation can potentially be relaxed by using
alternative spatial relationships, such as buffered overlaps
or minimum distance criteria. Similarly, instances where
unrelated migrating features cross paths or occupy the same
region at different periods of time can result in erroneous
temporal linkages. These cases can be addressed through
additional post-processing of the graph and are discussed
later.

A third layer can be added to the graph following the same
procedure. Assume there is a layer C representing the system
state at time tC > tB that partially overlaps both layers A

and B (DA ∩DB ∩DC 6= ∅). A spatial union of layer C

and the existing union layer AB yields a new union layer
ABC = AB ∪ C ≡ A ∪B ∪ C and a three-column union
attribute table. Each pairwise combination of columns in
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the union table are edge lists of a graph that links features
across layers A, B, and C. New information from layer
C is contained in the column pairs (A,C) and (B,C).
Appending this new information to the graph G(A,B)

potentially revises the component definitions as new linkages
are exposed in the supergraph G(A,B,C) ⊃ G(A,B). The
time series for a particular component k may proceed from
tA → tB , tA → tC , tB → tC , or tA → tB → tC , depending
on whether the component contains features from layers A,
B, and/or C. The order in which layers are incorporated
into the graph does not affect the definition of the graph
components. Features in one layer that are not linked to
features in other layers are included in the graph as isolated
nodes, and as single observations of a unique component in
the extracted time series.

The constructed graph is an intermediate data structure
that converts a series of system-wide observations (snap-
shots) to a set of time series of individual features. Our
method has some similarities to work by Thibaud et al.
(2013) and earlier theoretical development by Del Mondo
et al. (2010), but does not require specialized software or
database structures, instead using the constructed graph to
map the spatio-temporal data to tabular panel data. Phillips
et al. (2015) describe a taxonomy for classifying graph-
theoretic applications in the geosciences; our method is cod-
ified within this framework as a spatially-explicit network
analysis of historical contigency, representing distinct spatial
features as individual nodes and temporal progression as
edges.

The method can be applied to any system where features
of interest can be reliably delineated and represented as
distinct polygons, and can support virtually any spatial
interaction rule (including more complex spatial interactions
based on buffers, border sharing, etc.) to identify feature
linkages. The method does not alter the underlying
landform classification scheme, and therefore cannot resolve
deficiencies in the classification or delineation of features;
however, the membership information could potentially be
incorporated into a post-processing workflow to help identify
classification problems. The method relies on simple,
automated graph manipulations available in a wide variety of
software packages (e.g., the “network” package for R (Butts
2008), the “networkX” module for Python (Schult 2008),
the cross-language “igraph” library (Csardi and Nepusz
2006), and others; example R code for recreating the above
example is included in the supplemental materials). The
method identifies spatio-temporal linkages between discrete
observations in a system and can, therefore, upscale feature-
scale information to system-scale metrics and analysis.

Example: application to GEOBIA of
emergent sandbars

We illustrate the method with an application to emergent
sandbars in the Missouri River. The dataset is a collection
of spatial layers containing GEOBIA-classified landforms
derived from high-resolution satellite imagery. The dataset
was developed to map least tern nesting habitat (Strong
2012). Figure 3 shows five snapshots of a section of
the Missouri River shortly downstream of Gavins Point
Dam (1960 River Mile 808.8 to 794.2). The snapshots
are ordered by date and capture flow conditions ranging
from 270 m3 s-1 (flow-duration (FD) percentile > 99%) to
1,340 m3 s-1 (FD ∼ 10%) (USACE 2013). The GEOBIA
delineation and classification of landforms is highly flow-
dependent. At the lowest flow (Figure 3B, October 2005)
most sandbars are attached to the banks, and one large
landform dominates the area. Higher flows fragment the
sandbar complexes, disconnect them from the banks, or
inundate sandbars completely. The delineated geographic
units (polygons) in a given snapshot may in reality represent
either intact, contiguous landforms or fragments of a larger
landform. However, The GEOBIA classification operates on
each snapshot independently and classifies each geographic
unit as a separate landform.

Landscape patterns

The graph approach automatically identifies spatio-temporal
links between geographic units. Each distinct group of
geographic units, represented as a component of the graph,
defines a geomorphic unit. We used the procedure outlined
in §Methodology to automatically identify geomorphic
units based on a simple spatial overlap rule that excluded
landforms not classified as either bank-attached (green) or
mid-channel (yellow) sandbars (e.g., water, farmland and
built structures). The resulting geomorphic units, which we
refer to as “sandbar complexes”, consist of groups of bank-
attached and mid-channel sandbars that are spatially and
temporally related. The method extracted relevant attribute
data from each layer and linked it to the sandbar complexes.

Habitat patch counts provide important context to
habitat area data. The relationship between river flow and
sandbar fragmentation is particularly important for least
tern reproductive success, because changes in river stage
can inundate nests and strand chicks (Smith and Renken
1993; Sidle et al. 1992) as well as modify predation and
disturbance risk by changing connectivity between sandbars
and channel banks (Schwalbach 1998; Kirsch 1996). As
flow increases, some sandbars will fragment while others
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Mid-channel sandbar
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Figure 3. Five snapshots of a section of the Missouri River (1960 River Mile 808.8 to 794.2) spanning June 2005 through July
2010 and flows between 270 and 1,340 cubic meters per second. The flow-duration (FD) percentiles were computed from Gavins
Point Dam release records (USACE 2013). Landforms are colored according to a GEOBIA classification scheme.

will become completely inundated. Continued increase in
flow will eventually result in total inundation of all sandbars
and sandbar fragments, but the degree of fragmentation and
inundation varies between sandbars and across the flow
regime.

Automatically grouping geographic units (polygons) into
geomorphic units (sandbar complexes) makes the analysis
metrics more meaningful. Figure 4 compares the geographic
unit count (from the traditional, temporally-naive method) to
the count of geomorphic units (new method) across the range
of flows. The naive method, which counts geographic units
without geomorphic context, cannot differentiate between
fragmentation and inundation of sandbars. Therefore, it
reports more sandbars as flow increases and inundates
these features (because partial inundation fragments the
geomorphic units into multiple polygons) and shows
significant variation in the count data at higher flows (due
to the co-occurrence of fragmentation and inundation).
The naive method cannot differentiate between changes
within landforms (fragmentation) and changes across the
landscape (inundation) because it does not account for the
spatio-temporal links between geographic units, and this
important spatial aspect is lost when landscape descriptors
are generated from geographic units. Grouping sandbar
fragments by their underlying geomorphic unit captures
the total inundation of these geomorphic units. The new
method generates a reasonable, monotonically decreasing
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Figure 4. Counts of geographic units compared to geomorphic
units across the range of flows. At the lowest flow, the counts
are identical. Unlike the new method, the naive method cannot
distinguish between fragmentation and inundation of
geomorphic units.

trend, where the unit count drops consistently as higher flows
inundate sandbar complexes.

The new method retains all polygon information. Changes
in landscape configuration and the distribution of size,
abundance, and classification of geographic units can be
explored within the context of the underlying geomorphic
units. Unlike the naive method, the new method identifies
exactly which units fragment or inundate, and to what extent.
Figure 5 (top) compares the distribution of geographic-unit
areas (naive method) to the distribution of geomorphic-unit
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areas (new method) across the range of flows. The (log-
transformed) distribution of geographic-unit area exhibits
a strong positive skew at higher flows compared to the
distribution of geomorphic-unit area, primarily because
fragmentation of geomorphic units is not accounted for. In
contrast, the distribution of geomorphic-unit area is largely
(log)normal and actually develops a weak negative skew
at higher flows. This is because smaller geomorphic units
tend to become completely inundated as flows increase
while larger units persist but become fragmented. Figure 5
(bottom) shows that a small minority of geomorphic units
account for the majority of fragmentation in the study
area. Temporally-naive methods incorrectly consider these
fragments as individual observations; in reality, multiple
geographic units correspond to the same geomorphic unit.
Statistical models based on geographic units may have
erroneously high measures of significance and statistical
power because the assumption that geographic units are
independently and identically distributed (i.i.d.) is incorrect.
Models based on geomorphic units will generally be more
realistic despite the apparent loss of statistical power (since
grouping geographic units by geomorphic unit effectively
reduces the sample size).

Missing data

Achieving complete coverage of a large study area often
requires multiple adjacent images. Collections of remotely-
sensed imagery often have different extents and include
portions of images that are obstructed by clouds, glare or
other image artifacts, as shown in Figure 6. Generating
landscape metrics (such as described in §Landscape
patterns) under these conditions can be challenging with
traditional methods. Researchers commonly either (a) report
normalized landscape metrics to account for differing
extents and extrapolate findings to regions outside the
area of overlap, or (b) splice multiple images together
ad hoc to generate datasets with comparable extent. The
latter option can be prohibitively time-consuming for
large datasets, and is generally unsuitable for dynamic
landscapes because adjacent images may not provide a
consistent representation of the system state due to changing
environmental conditions.

The new method overcomes these issues by linking
information between individual geomorphic units to generate
datasets that contain the maximum set of available data
for each unit. Images with differing extents are handled
automatically as discussed in §Methodology. When two
images have different extents, the spatial union will
by definition contain regions where there is no spatial
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Figure 5. Top: Relative frequency of geographic-unit areas
compared to geomorphic unit-areas. At the lowest flow, the
distributions are identical. The distribution of geographic-unit
area develops a strong positive skew as sandbars fragment at
higher flows, but the distribution of geomorphic-unit area
actually develops a weak negative skew as flow increases. This
is because smaller geomorphic units tend to become
completely inundated as flow increases, while larger
geomorphic units persist as multiple fragments. Bottom:
Geomorphic-unit fragmentation across the range of flows. At the
lowest flow, all geomorphic units are single landforms. A
minority of geomorphic units become highly fragmented and are
responsible for the majority of the observed increase in
geographic units. Most geomorphic features in the study area
do not fragment at all prior to becoming inundated, or fragment
into only 2-3 geographic units.

overlap between the images. The method also generates a
geomorphic footprint for each geomorphic unit, a polygon
that defines the coverage of each geomorphic unit over the
range of snapshots. The geomorphic footprint is used as a
post-processor to identify cases where a sandbar complex is
obstructed (e.g., by detecting whether it shares a border with
classified cloud objects) or truncated at the edge of an image
(e.g., by testing if the geomorphic footprint extends past the
boundary of a snapshot). These occurrences are flagged in
the data and the corresponding nodes are removed from the
graph. Figure 6 illustrates how geomorphic footprints are
used to handle different types of missing data.

The geomorphic footprint can also be used to detect
a third type of missing observation: the case where a
geomorphic unit is completely inundated or has otherwise
evolved beyond the object classification scheme. In the case
where a geomorphic footprint is unobstructed and fully
contained by a snapshot, but no geographic units are present
within the footprint (i.e., there are no delineated polygons
in a region in the snapshot, but one or more polygons are
present in the same region in other snapshots), the method
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Figure 6. Common causes of missing spatial data. The
geomorphic footprints (red outline) are constructed from all
available images and used to identify cases where geomorphic
units are truncated at the edges of images, obscured by clouds
and cloud shadow, or are completely inundated.

can be used to add a “virtual observation” to the dataset
to maintain continuity of information. Virtual observations
are generated by performing an intersection between a layer
and the geomorphic footprint. A footprint that is completely
contained and unobstructed in the intersection, but does not
contain any features, indicates a virtual observation. Virtual
observations can be useful for analyzing landform change
or directly modeling inundation likelihood. For example,
virtual observations can be assigned zero-value areas and
appended to the panel dataset to represent sandbars that are
completely inundated.

The simplest way to define the geomorphic footprint is to
use all available layers, i.e., the geomorphic footprint will be
the combined extent of all geographic units from all layers
that share the same membership. However, the geomorphic
footprint can be defined using other criteria, and can be
adaptive. For example, the geomorphic footprint for an
emergent sandbar might be defined as the feature boundary
identified at the next lowest discharge, and not require that
the entire footprint of the sandbar at the lowest observed
discharge be captured by every snapshot. For features that
migrate, the geomorphic footprint might be defined as the
minimum bounding area of the initial and final location of
the feature, ensuring that every snapshot captures the path
of migration without any obstructions. The most appropriate
strategy for defining the geomorphic footprint will depend on
the nature of the landforms and processes being investigated.

The data generated with the new method include all
available observations for each geomorphic unit. For
the snapshots shown in Figure 3, less than half of
the identified geomorphic units are captured in all five
snapshots. Coincident observations of geomorphic units can
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Figure 7. Left: Aggregate plot of relationship between landform
area and flow. Aggregated data can document broader
landscape trends, but information on variation between
landforms is lost. Right: The individual geomorphic unit
trajectories. Arrows indicate the trajectory of individual units with
respect to flow. When the trajectories are known, broader
landscape trends can be decomposed into variation between
individual geomorphic units and system-wide trends.

be easily extracted from the data to generate consistent
landscape metrics across images, for example by filtering out
geomorphic units that were not captured by all images in the
collection. However, doing so can result in considerable loss
of data (as occurs in traditional naive analyses). In this case,
54% of geomorphic units would need to be excluded in order
to derive consistent landscape metrics for all five snapshots.
Over 13% of geomorphic units were captured by three or
fewer snapshots. The next section describes an alternative
approach to analyzing landscape structure that incorporates
all available data.

Geomorphic unit modeling

The new method generates datasets that can be directly
incorporated into panel data models. A panel data model is a
class of statistical model where repeated observations of one
or more variables are grouped within a (possibly multilevel)
hierarchy (Fitzmaurice et al. 2012). Panel studies generally
have more explanatory power than cross-sectional studies
because they are able to control for time-invariant differences
between individual entities and explicitly incorporate the
temporal sequence of events (Menard 2002; Ployhart and
Vandenberg 2010). Furthermore, a number of strategies exist
for imputing missing observations in panel datasets, which
can improve the accuracy of parameter estimates (Enders
2010; van Buuren 2012; Ibrahim and Molenberghs 2017).

Automatically “connecting the dots” between observa-
tions to specify trajectories of individual geomorphic units
supports a broader range of analyses. Without information
on trajectories, a practical analysis of geographic unit data
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would focus on documenting broader landscape trends, e.g.,
by totaling the sandbar area for each discharge. For instance,
the change in total area relative to the area observed at the
minimum flow could regressed against “excess” flow (i.e.,
the increase in flow above the minimum observed flow), as
shown in Figure 7 (left). When the trajectories of individual
landforms are known, these broader landscape trends can
be further decomposed into variation between individual
geomorphic units and system-wide trends. Figure 7 (right)
shows the trajectories of individual geomorphic units.

Visual comparison of the aggregate trend to the
individual trajectories reveals two important drawbacks of
the traditional aggregate analysis. First, the overall trend is
driven almost entirely by the largest geomorphic unit. The
combined initial area of the remaining features is less than
one square kilometer, compared to the largest geomorphic
unit’s area of almost five square kilometers. Changes in
smaller geomorphic units are overshadowed by larger units
as a result of aggregation. While this may be qualitatively
apparent from visual inspection of the snapshots, quantifying
the influence of each geomorphic unit on the aggregate trend
is only possible when their trajectories are explicitly known.
Second, the aggregate analysis requires that the region of
analysis be restricted to the area of overlap for all snapshots.
As a result, a significant number of geomorphic units must
be excluded from the analysis of the overall trend.

Knowledge of individual trajectories can be used to
improve aggregate analysis by, for example, informing bin-
ning or grouping strategies (e.g., by identifying geomorphic
units with similar properties or trajectories) or estimating
missing observations from the individual trajectory of a
geomorphic unit in order to expand the region of analy-
sis. The individual trajectories can also be used to guide
sensitivity analyses of the aggregate trend and quantify the
influence of each geomorphic unit on the model fit, such
as by applying leave-one-out analyses where trajectories of
individual geomorphic units are excluded and the aggregate
trend is recomputed (Burt et al. 2009). Alternatively, deeper
insights into system behavior can be gained by explicitly
representing the trajectories of individual geomorphic units
in system-level models. However, explicitly modeling indi-
vidual geomorphic units can introduce additional challenges,
and such models may have reduced reliability and statistical
power relative to an aggregate model if the observation
sample size of each geomorphic unit is small (Carroll and
Pearson 1998; Kadmon et al. 2003; Hernandez et al. 2006).

Explicit knowledge of trajectories also allows researchers
to conduct analyses that are difficult to develop from
aggregate data. Figure 8 shows two analyses based on
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Figure 8. Left: Empirical survival plot of geomorphic units,
broken into two roughly-equal groups based on initial area (i.e.,
area observed at the lowest flow). Right: Logistic regression of
probability of inundation as a function of initial area.

sandbar inundation. The left panel shows empirical survival
curves for geomorphic units, split into two roughly-equal
groups based on their initial area (i.e., area observed at
270 m3 s-1). In this example, survival refers to complete
inundation of a sandbar in response to increasing discharge.
The right panel shows a different approach that models
probability of inundation as a logistic function of initial area.
Both of these analyses rely on geomorphic unit trajectories
to capture the inundation of individual geomorphic units. A
comparable analysis is not easily formulated for aggregate
data or geographic unit data, and would likely suffer from
the issues discussed in the previous sections.

Inferring geomorphic structure from graph
structure

Constructing a panel dataset using our methodology requires
only the most basic premises of graph theory—namely, the
node-edge representation of data and the concept of graph
components. The previous sections demonstrate how, even in
its basic form, a graph-theory approach can mitigate several
common issues with landform analysis. However, once the
temporally-explicit data structure is generated, higher-level
graph theory can yield insight of geomorphic change through
analysis of the component graph structure. These techniques
offer a promising avenue for geomorphic analyses which
retain information on the spatial configuration of geomorphic
units.

The spatial union governs the structure of the graph. When
features are relatively persistent, it is useful to initially graph
the union of all available layers, generating a graph with
edges representing spatial relationships between features
in all pairwise combinations of overlapping layers. For
example, if the spatial layers represent features within a
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Figure 9. A single sandbar component observed at four distinct
flows.

system at different times, the graph of the union of all
layers will capture feature evolution across multiple time
scales, i.e., it will be a “multi-scale graph” of the data
set. Appropriately-constructed two-dimensional GIS data
typically preclude overlap between features in a single layer;
therefore, multi-scale graphs will not contain edges between
features from the same layer. When the order of the unions
has meaning (for example, if the layers are time-ordered)
a directed graph can be constructed where edge directions
indicate the transition from one layer to the next. A graph
produced in this way will have no mutual edges (e.g., time
proceeds in only one direction) and no cycles, i.e., the graph
is a directed acyclic graph (DAG). DAGs have a number of
useful properties (Thulasiraman and Swamy 1992) that can
be leveraged for geomorphological analysis.

Consider the example of a single sandbar complex
observed at four different times in Figure 9. The multi-scale
graph representing the sandbar complex generated from the
ordered sequence of images A, B, C, and D (where the
layers could be ordered in chronological sequence, or from
high flow to low flow, etc.) contains edges from nodes in
A to nodes in B, B to C, and C to D as well as edges
from A to C, A to D, and B to C. If edges outside of
the sequence A→ B → C → D are removed, the resulting
graph represents the progression of change, referred to here
as a progression graph. The multi-scale graph expresses the
presence or absence of a path between any two nodes in
the progression graph, i.e., it is the reachability graph of
the progression graph. A variety of methods can extract a
progression graph from a reachability graph, such as longest
path algorithms (which are relatively fast for DAGs).

The edge directions of a reachability graph are defined
entirely by the union order, whereas the non-directional

structure (i.e., the presence/absence of nodes or edges)
is not. Regardless of the ordering used for unions, the
non-directional structure of the reachability graphs will
be the same for all progression graphs (they will be
isomorphic). Therefore, it is not necessary to repeat spatial
union operations with different orderings (which could be
computationally intensive) in order to produce different
progression graphs. Instead, the edge directions of a
reachability graph can be manipulated directly to produce
different progression graphs.

Figure 10 shows the relationship between the non-
directional reachability graph of the sandbar complex in
Figure 9 and two progression graphs, one ordered by time
and the other ordered by flow. Both progression graphs
have the same reachability graph when edge direction is
ignored. If the sandbar does not erode or build over time,
the geomorphic structure of the sandbar at any given time
will be a function of flow only. The flow-progression graph
will be a “true tree” (i.e., the graph will contain a single “root
node” and every node will have at most one incoming edge)
like the flow-progression graph in Figure 10. Conversely, the
time-progression graph of the same sandbar complex will
not be a true tree, unless by coincidence river flow increases
monotonically over the time interval of the image collection.

0 500 1,000250 Meters

Reachability 
graph

Time-progression
graph

Flow-progression
graph

±

Figure 10. Graph representations of the sandbar complex in
Figure 9. Left: The reachability graph, with edge directions
omitted. Top right: the time-progression graph. Bottom right: the
flow-progression graph.

Identifying cases where morphodynamic change has
occurred but is confounded by hydrodynamic change
can be challenging. §Geomorphic unit modeling described
statistical approaches to modeling the relationship between
flow and sandbar change. However, the component graphs
can also be used to identify change. Morphodynamic
change can be distinguished from hydrodynamic change by
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Figure 11. Flow-progression graph of a sandbar complex. The
flow-progression graph is not a true tree and suggests
morphodynamic change between 2008 and 2012. However, for
the 2006–2008 interval the flow-progression graph is a tree.

evaluating the structure of the flow-progression graph. If
the flow-progression graph is not a true tree, this indicates
morphodynamic change. The sandbar complex in Figure 11
shows change that is not fully explained by hydrodynamics.
The sandbar complex consolidated and grew between 2008
and 2012, likely the result of high flows in 2010 and the
historic 2011 flood (Cowman 2012; Gusman et al. 2015).
These significant morphodynamic changes result in a flow
progression graph that is not a tree.

Even for sandbar complexes that erode or build without
significant change to geomorphic structure, progression
graphs can still be informative. For instance, area-
progression graphs can be constructed based on the total
area of the sandbar complex at each snapshot in time. If
the flow-progression graph is not isomorphic to the area-
progression graph, this indicates that there are changes in
the sandbar area that are not consistent with hydrodynamics
alone. Alternatively, the graph structure can be used to
identify specific periods during which morphodynamic
change occurred. For example, the flow progression graph
of the sandbar complex in Figure 11 is a true tree for
2006–2008 interval, indicating that the observed change
during this period is fully consistent with flow variability.
Therefore, one can reasonably conclude from the graph
that the majority of morphodynamic change recorded in
the available data occurred during the 2008–2012 interval.
Testing for tree structures and isomorphism can be used
as a preliminary screening method for separating sandbars
that undergo significant morphodynamic change over a given
time period from “stable” sandbars that do not. Most graph
manipulation software packages include algorithms for
programmatically identifying tree structures and comparing
graphs (or subsections of graphs, i.e., subgraphs) for
isomorphism.

0 100 20050
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JUN 27 2005
650 m3 s-1

JUL 02 2005
600 m3 s-1

JUL 18 2006
720 m3 s-1

JUL 13 2007
600 m3 s-1

JUN 09 2008
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(no features 
detected)

±

Figure 12. Top: The reachability graph of a sandbar complex
based on a union of five layers. Although no features were
captured in the 2006 layer, landform persistence is assumed
(virtual observation) based on overlap between other layers,
and the features from each layer are linked as a single
geomorphic unit. Bottom: The reachability graph of a sandbar
complex based on a memory of approximately one year.
Because no features were detected in 2006, no connection is
made between the features detected in 2005 and those
detected in 2007. As a result, the features from 2005 are
grouped into one geomorphic unit while the features from 2007
and 2008 are grouped into a separate geomorphic unit.

Sandbars can become fully submerged in one snapshot
and re-emerge in a later snapshot when flows recede.
The geomorphic footprint is a critical tool for linking
observations across high-flow snapshots and separating
hydrodynamic change from morphodynamic change. The
simplest way to construct the geomorphic footprint is to
perform a union of all available snapshots. However, using
all available layers to construct the geomorphic footprint
assumes features that disappear and reappear in the same
region are the same geomorphic unit, as shown in Figure 12
(top). This assumption may not be true in landscapes
where landforms undergo rapid morphodynamic change
and persist for relatively short periods of time. In such
cases, defining the geomorphic footprint from all available
layers may erroneously link a newly-created landform to
a landform that occupied the region at an earlier time
but has since disappeared (e.g., due to erosion). Migrating
features that cross the same region at different times may
also be erroneously identified as belonging to the same
geomorphic unit. Linkages between features across layers
can be corrected by incorporating the concept of memory

(Brierley 2010) to modify geomorphic unit definitions.

The relationship between a progression graph and the
reachability graph provides a mechanism for imposing a
finite memory on geomorphic units. Edges can be dropped
from the reachability graph if they exceed a specified time
threshold. Alternatively, the edges of a progression graph can
be modified and the reachability graph can be reconstructed.
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Incorporating a threshold for landform memory into the
reachability graph may change how features are grouped into
geomorphic units, as shown in Figure 12 (bottom). These
changes will affect the resulting panel data and geomorphic
footprints, and the structure of any derived progression
graphs.

Conclusion

We described a simple and flexible graph-based method
for generating panel datasets from geomorphological spatial
data. The method provides a number of advantages over
traditional temporally-naive procedural methods that operate
on geographic units without differentiating between within-
landform change and between-landform variation. We used
GEOBIA-derived data on emergent sandbars to provide
examples of generating landscape descriptors, handling
missing data and developing statistical models using
the new method, and described promising avenues for
geomorphological analyses that leverage graph structure.
The approach is readily applied to a wide variety of
dynamic landscapes and types of spatial data, and overcomes
significant challenges in managing and analyzing spatial data
in large-scale studies of geomorphic change.
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